Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available October 1, 2026
-
Do LMs infer the semantics of text from co-occurrence patterns in their training data? Merrill et al. (2022) argue that, in theory, sentence co-occurrence probabilities predicted by an optimal LM should reflect the entailment relationship of the constituent sentences, but it is unclear whether probabilities predicted by neural LMs encode entailment in this way because of strong assumptions made by Merrill et al. (namely, that humans always avoid redundancy). In this work, we investigate whether their theory can be used to decode entailment relations from neural LMs. We find that a test similar to theirs can decode entailment relations between natural sentences, well above random chance, though not perfectly, across many datasets and LMs. This suggests LMs implicitly model aspects of semantics to predict semantic effects on sentence co-occurrence patterns. However, we find the test that predicts entailment in practice works in the opposite direction to the theoretical test. We thus revisit the assumptions underlying the original test, finding its derivation did not adequately account for redundancy in human-written text. We argue that better accounting for redundancy related to explanations might derive the observed flipped test and, more generally, improve computational models of speakers in linguistics.more » « less
-
Pretraining language models on formal language can improve their acquisition of natural language. Which features of the formal language impart an inductive bias that leads to effective transfer? Drawing on insights from linguistics and complexity theory, we hypothesize that effective transfer occurs when two conditions are met: the formal language should capture the dependency structures present in natural language, and it should remain within the computational limitations of the model architecture. We experiment with pre-pretraining (training on formal language before natural languages) on transformers and find that formal languages capturing hierarchical dependencies indeed enable language models to achieve lower loss on natural language and better linguistic generalization compared to other formal languages. We also find modest support for the hypothesis that the formal language should fall within the computational limitations of the architecture. Strikingly, pre-pretraining reduces loss more efficiently than training on a matched amount of natural language. For a 1B-parameter language model trained on roughly 1.6B tokens of natural language, pre-pretraining achieves the same loss and better linguistic generalization with a 33% smaller token budget. Finally, we also give mechanistic evidence of transfer from formal to natural language: attention heads acquired during pre-pretraining remain crucial for the model's performance on syntactic evaluations.more » « less
An official website of the United States government

Full Text Available